Masters In Data Science

(Online)

full stack IT quality testing

All

sKILL lEVEL

10

Lessons

232 Hours

dURATION

English

lANGUAGE

Online

MODE OF TRAINING

About the program

Our online master’s in Data Science program lets you gain proficiency in Data Science. You will work on real-world projects in Data Science with R, Hadoop Dev, Admin, Test and Analysis, Apache Spark, Scala, Deep Learning, Tableau, Data Science with SAS, SQL, MongoDB and more. In this program, you will cover 10 programs and 30 industry-based projects with 1 CAPSTONE project. 

As a part of online classroom training, you will receive five additional self-paced programs co-created with IBM namely Deep Learning with TensorFlow, Build Chatbots with Watson Assistant, R for Data Science, Spark MLlIb, and Python for Data Science. Moreover, you will also get an exclusive access to IBM Watson Cloud Lab for Chatbots program. Enroll now and pursue your MS in Data Science online.

0 (8)_3

What's Included?

Data Science Bootcamp Program

Who should Apply?

  • Professionals who aspire to be a Data Scientist in top organizations
  • Data Scientists who have a keen interest in upgrading their skills
  • Information Architects
  • Machine Learning professionals
  • Business Intelligence professionals
  • Software Developers
  • Project Managers

What will you learn?

Program Outline

42 Hours 15 Module

Module 01 – Introduction to Data Science with R
Module 02 – Data Exploration
Module 03 – Data Manipulation
Module 04 – Data Visualization
Module 05 – Introduction to Statistics
Module 06 – Machine Learning
Module 07 – Logistic Regression
Module 08 – Decision Trees and Random Forest
Module 09 – Unsupervised Learning
Module 10 – Association Rule Mining and Recommendation Engines

Self-paced Course Content

Module 11 – Introduction to Artificial Intelligence
Module 12 – Time Series Analysis
Module 13 – Support Vector Machine (SVM)
Module 14 – Naïve Bayes
Module 15 – Text Mining

39 Hours 14 Module

Module 01 – Introduction to Data Science using Python
Module 02 – Python basic constructs
Module 03 – Maths for DS-Statistics & Probability
Module 04 – OOPs in Python (Self paced)
Module 05 – NumPy for mathematical computing
Module 06 – SciPy for scientific computing
Module 07 – Data manipulation
Module 08 – Data visualization with Matplotlib
Module 09 – Machine Learning using Python
Module 10 – Supervised learning
Module 11 – Unsupervised Learning
Module 12 – Python integration with Spark (Self paced)
Module 13 – Dimensionality Reduction
Module 14 – Time Series Forecasting

32 Hours 9 Module

Module 01 – Introduction to Machine Learning
Module 02 – Supervised Learning and Linear Regression
Module 03 – Classification and Logistic Regression
Module 04 – Decision Tree and Random Forest
Module 05 – Naïve Bayes and Support Vector Machine (self-paced)
Module 06 – Unsupervised Learning
Module 07 – Natural Language Processing and Text Mining (self-paced)
Module 08 – Introduction to Deep Learning
Module 09 – Time Series Analysis (self-paced)

32 Hours 13 Module

Module 01 – Introduction to Deep Learning and Neural Networks
Module 02 – Multi-layered Neural Networks
Module 03 – Artificial Neural Networks and Various Methods
Module 04 – Deep Learning Libraries
Module 05 – Keras API
Module 06 – TFLearn API for TensorFlow
Module 07 – Dnns (deep neural networks)
Module 08 – Cnns (convolutional neural networks)
Module 09 – Rnns (recurrent neural networks)
Module 10 – Gpu in deep learning
Module 11 – Autoencoders and restricted boltzmann machine (rbm)
Module 12 – Deep learning applications
Module 13 – Chatbots

60 Hours 33 Module

Module 01 – Hadoop Installation and Setup
Module 02 – Introduction to Big Data Hadoop and Understanding HDFS and MapReduce
Module 03 – Deep Dive in MapReduce
Module 04 – Introduction to Hive
Module 05 – Advanced Hive and Impala
Module 06 – Introduction to Pig
Module 07 – Flume, Sqoop and HBase
Module 08 – Writing Spark Applications Using Scala
Module 09 – Use Case Bobsrockets Package
Module 10 – Introduction to Spark
Module 11 – Spark Basics
Module 12 – Working with RDDs in Spark
Module 13 – Aggregating Data with Pair RDDs
Module 14 – Writing and Deploying Spark Applications
Module 15 – Project Solution Discussion and Cloudera Certification Tips and Tricks
Module 16 – Parallel Processing
Module 17 – Spark RDD Persistence
Module 18 – Spark MLlib
Module 19 – Integrating Apache Flume and Apache Kafka
Module 20 – Spark Streaming
Module 21 – Improving Spark Performance
Module 22 – Spark SQL and Data Frames
Module 23 – Scheduling/Partitioning

Following topics will be available only in self-paced mode:

Module 24 – Hadoop Administration – Multi-node Cluster Setup Using Amazon EC2
Module 25 – Hadoop Administration – Cluster Configuration
Module 26 – Hadoop Administration – Maintenance, Monitoring and Troubleshooting
Module 27 – ETL Connectivity with Hadoop Ecosystem (Self-Paced)
Module 28 – Hadoop Application Testing
Module 29 – Roles and Responsibilities of Hadoop Testing Professional
Module 30 – Framework Called MRUnit for Testing of MapReduce Programs
Module 31 – Unit Testing
Module 32 – Test Execution
Module 33 – Test Plan Strategy and Writing Test Cases for Testing Hadoop Application

30 Hours 13 Module

Module 01 – Introduction to Data Visualization and The Power of Tableau
Module 02 – Architecture of Tableau
Module 03 – Charts and Graphs
Module 04 – Working with Metadata and Data Blending
Module 05 – Advanced Data Manipulations
Module 06 – Working with Filters
Module 07 – Organizing Data and Visual Analytics
Module 08 – Working with Mapping
Module 09 – Working with Calculations and Expressions
Module 10 – Working with Parameters
Module 11 – Dashboards and Stories
Module 12 – Tableau Prep
Module 13 – Integration of Tableau with R

Self-paced Program Outline

22 Hours 17 Module

Module 01 – Introduction to SAS
Module 02 – SAS Enterprise Guide
Module 03 – SAS Operators and Functions
Module 04 – Compilation and Execution
Module 05 – Using Variables
Module 06 – Creation and Compilation of SAS Data Sets
Module 07 – SAS Procedures
Module 08 – Input Statement and Formatted Input
Module 09 – SAS Format
Module 10 – SAS Graphs
Module 11 – Interactive Data Processing
Module 12 – Data Transformation Function
Module 13 – Output Delivery System (ODS)
Module 14 – SAS Macros
Module 15 – PROC SQL
Module 16 – Advanced Base SAS
Module 17 – Summarization Reports

24 Hours 23 Module

Module 01 – Entering Data
Module 02 – Referencing in Formulas
Module 03 – Name Range
Module 04 – Understanding Logical Functions
Module 05 – Getting started with Conditional Formatting
Module 06 – Advanced-level Validation
Module 07 – Important Formulas in Excel
Module 08 – Working with Dynamic table
Module 09 – Data Sorting
Module 10 – Data Filtering
Module 11 – Chart Creation
Module 12 – Various Techniques of Charting
Module 13 – Pivot Tables in Excel
Module 14 – Ensuring Data and File Security
Module 15 – Getting started with VBA Macros
Module 16 – Ranges and Worksheet in VBA
Module 17 – IF condition
Module 18 – Loops in VBA
Module 19 – Debugging in VBA
Module 20 – Dashboard Visualization
Module 21 – Principles of Charting
Module 22 – Getting started with Pivot Tables
Module 23 – Statistics with Excel

24 Hours 9 Module

Module 01 – Introduction to NoSQL and MongoDB
Module 02 – MongoDB Installation
Module 03 – Importance of NoSQL
Module 04 – CRUD Operations
Module 05 – Data Modeling and Schema Design
Module 06 – Data Management and Administration
Module 07 – Data Indexing and Aggregation
Module 08 – MongoDB Security
Module 09 – Working with Unstructured Data

16 Hours 13 Module

Module 01 – Introduction to SQL
Module 02 – Database Normalization and Entity Relationship Model
Module 03 – SQL Operators
Module 04 – Working with SQL: Join, Tables, and Variables
Module 05 – Deep Dive into SQL Functions
Module 06 – Working with Subqueries
Module 07 – SQL Views, Functions, and Stored Procedures
Module 08 – Deep Dive into User-defined Functions
Module 09 – SQL Optimization and Performance
Module 10 – Advanced Topics
Module 11 – Managing Database Concurrency
Module 12 – Programming Databases Using Transact-SQL
Module 13 – Microsoft Courses: Study Material

Project Work

How Can We Help You?

Get In Touch With Us

    Need help?